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Abstract— The active control consists of the compensation of non-linearities and the decoupling of the equations that describe the dynamics 

of a system to achieve its stabilization. In this paper, this strategy is applied to a slave system to compel it to follow the dynamics of an 

autonomous master system. Both systems are based on a new chaotic system recently reported [1]. The parameters of both master  and 

slave systems are assumed to be a priori known. Once the synchronization error between these two systems is es tablished, the 

corresponding dynamics of this error is calculated. Next, a control law is designed to guarantee the exponential convergence to zero of such 

error. The performance of this controller is illustrated by numerical simulation.  

Index Terms— active control, chaos synchronization, master – slave configuration, error dynamics, Lyapunov analysis  

——————————   ◆   —————————— 

1. INTRODUCTION 

HAOS theory deals with the study of systems with 
peculiar characteristics such as very high sensitivity to 
initial conditions, boundedness of solutions, and a rich 

dynamic behaviour. The current importance and influence 
of this theory can be verified by the development of useful 
applications in disciplines as diverse as biology, engineering 
[2], [3], politics [4], finances [5],[6], administration [7], 
medicine [8], psychology [9], geophysics [10] and hydrology 
[11].  

The chaotic systems can be represented by means of 
nonlinear ordinary differential equations of third order or 
higher order. Although both the structure and the 
parameters of these equations can be completely a priori 
known, due to high sensitivity to the initial conditions, the 
dynamic behaviour of these kind of systems cannot be 
predicted [12], [13], [14], [15]. In spite of this fact, it is still 
possible to control and also synchronize them [16]. 

Synchronization consists of the modification of the 
dynamic behaviour of two or more systems in such a way 
that all of them provide the same response simultaneously. 
The synchronization between two systems can be 
unidirectional or bidirectional [17], [18]. Unidirectional 
synchronization refers to the establishment of a master – 
slave relationship, where the slave system must follow the 
response of the master system.  

The synchronization of chaotic systems can be realized by 
means of different control strategies. For example, in [19], 

nonlinear control is utilized to achieve the synchronization 
between Genesio and Rössler systems. In other papers, 
controllers based on stability analysis of Lyapunov have 
been developed [20], [21]. The synchronization with non-
linear feedback has also been studied, where systems whose 
feedback consists of a linear term and a compensation of 
non-linear terms of each state [22], [23]. On other hand, when 
the parameters of the systems are unknown, adaptive 
control can be applied [24]. Other control techniques have 
also been developed to achieve the unidirectional 
synchronization of different systems [25], [26], [27], [28], [29]. 

The active control is a strategy which permits the 
synchronization of a master-slave configuration in a 
systematic way. This strategy consists of the compensation 
of non-linearities and the decoupling of the equations of the 
error dynamics in such a way that the exponential 
convergence to zero of the synchronization error can be 
guaranteed if the parameters are a priori known [30].   

With this method, different chaotic systems have been 
synchronized [31], [32], [33], [34], [35], [36]. Also, a 
comparison between this method and backstepping control 
has even been proposed in [37]. Both present an excellent 
performance when they are implemented in embedded 
systems. 

In this paper, we propose for the first time the 
synchronization of a master-slave configuration based on a 
new chaotic system recently reported in [1] by using active 
control. The control law here proposed is tested by means of 
numerical simulation.  

2. MULTI – CHARACTER CHAOTIC SYSTEM 

The system presented in [1] can be described by the 
following set of ordinary differential equations:  

C 
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�̇� = −𝑎𝑦 
�̇� = 𝑏𝑤𝑧 + 𝑑 
�̇� = 𝑦2 − 𝑐𝑧2 + �̅� 
�̇� = 𝑥 + 𝑦 − 𝑧(𝑦 + 𝑤) 

(1) 
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where 𝑥, 𝑦, 𝑧 and 𝑤 are the states and 𝑎, 𝑏, 𝑐, 𝑑, y �̅� are 
constant parameters. As the parameters are changed, 
different dynamic behaviours can be observed. In particular, 
according to [1], when the parameters are: 𝑎 = 0.05, 𝑏 = 5, 
𝑐 = 0.28, 𝑑 = 0.1, and �̅� = 0.01, with (1,1,1,1) as first initial 
condition, chaotic regime can be observed. This is illustrated 
by means of figures 1-4. In these figures, the different 3D 
phase portraits were obtained by using Simulink® 9.0 with 
ode23t solver and a relative tolerance value of 1e-7.  

The high sensitivity of the system (1) to initial conditions 
is shown in figures 5 - 8. The evolution of each state is 
presented and compared when the initial condition is 
changed from (1,1,1,1) to (1.1,1.1,1.1,1.1). In spite of this 
slight difference, as can be appreciated from these figures the 
responses diverge.  

 

3. SYNCHRONIZATION VIA ACTIVE CONTROL 

In this section, by means of active control, a controller is 
designed to achieve the synchronization between a master 
system and a slave system both based on Nazarimehr system 
(1). Taking this fact into account, the master system can be 
simply described as follows: 

And the controlled slave system is given by: 

 

 

 

 

�̇�𝑚 = −𝑎𝑦𝑚 
�̇�𝑚 = 𝑏𝑤𝑚𝑧𝑚 + 𝑑 
�̇�𝑚 = 𝑦𝑚

2 − 𝑐𝑧𝑚
2 + �̅� 

�̇�𝑚 = 𝑥𝑚 + 𝑦𝑚 − 𝑧𝑚(𝑦𝑚 + 𝑤𝑚) 

(2) 

�̇�𝑠 = −𝑎𝑦𝑠 + 𝑢1 
�̇�𝑠 = 𝑏𝑤𝑠𝑧𝑠 + 𝑑 + 𝑢2 
�̇�𝑠 = 𝑦𝑠

2 − 𝑐𝑧𝑠
2 + �̅� + 𝑢3 

�̇�𝑠 = 𝑥𝑠 + 𝑦𝑠 − 𝑧𝑠(𝑦𝑠 + 𝑤𝑠) + 𝑢4 

(3) 

Fig. 1. 3D phase portrait of 𝑥𝑦𝑧 states 

Fig. 2. 3D phase portrait of 𝑥𝑦𝑤 states 

Fig. 3. 3D phase portrait of 𝑥𝑧𝑤 states 

Fig. 4. 3D phase portrait of 𝑦𝑧𝑤 states 
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where 𝑢1, 𝑢2, 𝑢3, and 𝑢4 are the control inputs. It should be 
noted that the corresponding parameters of the two systems 
have the same value. The synchronization error between 
systems (2) and (3) can be defined as: 

Thus, the first derivative of (4) is given by: 

By substituting (2) and (3) into (5) and after some 
algebraic operations, the following is obtained: 

By following the principle of active control, that is, to 
compensate non-linearities and decouple the equations of 
error dynamics (6), the following control law can be 
obtained: 

where 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are control gains which permit 
control the speed of convergence process. If the control law 
(7) is substituted into (6), then the closed-loop 
synchronization error dynamics is given by: 

Or well,  

The stability of (8) is analysed in the following section.  

4. STABILITY PROOF 

The stability of system (8) can be determined by means of 
Lyapunov analysis. Let the Lypunov function candidate be: 

 

 

 

𝑒1 = 𝑥𝑠 − 𝑥𝑚 
𝑒2 = 𝑦𝑠 − 𝑦𝑚  
𝑒3 = 𝑧𝑠 − 𝑧𝑚 
𝑒4 = 𝑤𝑠 − 𝑤𝑚 

(4) 

�̇�1 = �̇�𝑠 − �̇�𝑚 
�̇�2 = �̇�𝑠 − �̇�𝑚  
�̇�3 = �̇�𝑠 − �̇�𝑚 
�̇�4 = �̇�𝑠 − �̇�𝑚 

(5) 

�̇�1 = −𝑎𝑒2 + 𝑢1 
�̇�2 = 𝑏(𝑧𝑠𝑒4 + 𝑤𝑚𝑒3) + 𝑢2 
�̇�3 = 𝑒2(𝑦𝑠 + 𝑦𝑚) − 𝑐𝑒3(𝑧𝑠 + 𝑧𝑚) + 𝑢3 
�̇�4 = 𝑒1 + 𝑒2(1 − 𝑧𝑠) − 𝑒3(𝑦𝑚 + 𝑤𝑚) − 𝑒4𝑧𝑠 + 𝑢4 

(6) 

𝑢1 = 𝑎𝑒2 − 𝑘1𝑒1 
𝑢2 = −𝑏(𝑧𝑠𝑒4 + 𝑤𝑚𝑒3) − 𝑘2𝑒2 
𝑢3 = −𝑒2(𝑦𝑠 + 𝑦𝑚) + 𝑐𝑒3(𝑧𝑠 + 𝑧𝑚) − 𝑘3𝑒3 
𝑢4 = −𝑒1 − 𝑒2(1 − 𝑧𝑠) + 𝑒3(𝑦𝑚 + 𝑤𝑚) + 𝑒4𝑧𝑠 − 𝑘4𝑒4 

(7) 

�̇�1 = −𝑘1𝑒1 
�̇�2 = −𝑘2𝑒2 
�̇�3 = −𝑘3𝑒3 
�̇�4 = −𝑘4𝑒4 

(8) 

�̇�𝑖 = −𝑘𝑖𝑒𝑖,   𝑖 = 1,2,3,4 (9) 

 

Fig. 5. Time series for 𝑥(𝑡) with different initial conditions 

Fig. 6. Time series for 𝑦(𝑡) with different initial conditions 

Fig. 7. Time series for 𝑧(𝑡) with different initial conditions 
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The first derivative of (10) is given by:  

By substituting (9) into (11) and simplifying: 

If 𝑘𝑖 > 0 for 𝑖 = 1,2,3,4 then �̇�(𝑒) < 0, that is, the first 
derivative of Lyapunov function candidate is negative 
definite. Consequently, the asymptotic convergence to zero 
of the synchronization error can be guaranteed from the 
second theorem of Lyapunov’s stability. Now, if  𝑘𝑖 > 1/2  
for 𝑖 = 1,2,3,4 then the following inequality is true:  

This inequality can be solved as follows: 

𝑑

𝑑𝑡
[𝑉(𝑒)] < −𝑉(𝑒) 

𝑑[𝑉(𝑒)]

𝑉(𝑒)
< −𝑑𝑡 

∫
𝑑[𝑉(𝑒)]

𝑉(𝑒)

𝑉(𝑒)

𝑉(0)

< − ∫ 𝑑𝜏

𝑡

0

 

ln[𝑉(𝑒)] |𝑉(𝑒(0))
𝑉(𝑒(𝑡))

< −𝜏|0
𝑡   

ln[𝑉(𝑒)] − ln[𝑉(𝑒(0))] < −𝑡 

ln [
𝑉(𝑒)

𝑉(𝑒(0))
] < −𝑡 

𝑉(𝑒)

𝑉(𝑒(0))
< exp(−𝑡) 

From (10), 𝑉(𝑒(0)) can be expressed as:  

If (10) and (15) are substituted into (14), then:  

Since ‖𝑒‖ = √∑ 𝑒𝑖
2𝑛

𝑖=1  and ‖𝑒(0)‖ = √∑ 𝑒𝑖
2(0)𝑛

𝑖=1 , (16) can be 
expressed as: 

1

2
‖𝑒‖2 <

1

2
‖𝑒(0)‖2 ⋅ exp(−𝑡) 

‖𝑒‖2 < ‖𝑒(0)‖2 ⋅ exp(−𝑡) 

By taking square root of both sides of the last inequality, 

From (17), the exponential convergence to zero of the 
synchronization error can be guaranteed. 

Another way to demonstrate the exponential convergence 
of the synchronization error is by solving the ordinary first-
order differential equation described in (9): 
𝑑

𝑑𝑡
(𝑒𝑖) = −𝑘𝑖𝑒𝑖 

𝑑(𝑒𝑖)

𝑒𝑖

= −𝑘𝑖 ⋅ 𝑑𝑡 

∫
𝑑(𝑒𝑖)

𝑒𝑖

𝑒(𝑡)

𝑒(0)

= −𝑘𝑖 ∫ 𝑑𝜏

𝑡

0

 

ln(𝑒𝑖) |𝑒(0)
𝑒(𝑡)

= −𝑘𝑖 ⋅ 𝜏|0
𝑡   

ln[𝑒𝑖(𝑡)] − ln[𝑒𝑖(0)] = −𝑘𝑖 ⋅ 𝑡 

ln [
𝑒𝑖(𝑡)

𝑒𝑖(0)
] = −𝑘𝑖 ⋅ 𝑡 

𝑉(𝑒) =
1

2
∑ 𝑒𝑖

2

4

𝑖=1

  (10) 

�̇�(𝑒) = ∑[𝑒𝑖 ⋅ �̇�𝑖]

4

𝑖=1

 (11) 

�̇�(𝑒) = −𝑘𝑖 ∑ 𝑒𝑖
2

4

𝑖=1

 (12) 

�̇�(𝑒) < −𝑉(𝑒) (13) 

𝑉(𝑒) < 𝑉(𝑒(0)) ⋅ exp(−𝑡) (14) 

𝑉(𝑒(0)) =
1

2
∑ 𝑒𝑖

2(0)

4

𝑖=1

 (15) 

1

2
∑ 𝑒𝑖

2

4

𝑖=1

<
1

2
∑ 𝑒𝑖

2(0)

4

𝑖=1

⋅ exp(−𝑡) (16) 

‖𝑒‖ < ‖𝑒(0)‖ ⋅ exp(−0.5 ⋅ 𝑡) (17) 

Fig. 8. Time series for 𝑤(𝑡) with different initial conditions 
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𝑒𝑖(𝑡)

𝑒𝑖(0)
= exp(−𝑘𝑖 ⋅ 𝑡) 

From (18), the convergence to zero of the synchronization 
error can also be verified. However, in this last result, it can 
be seen how a direct relationship between the value of 𝑘𝑖 for 
𝑖 = 1,2,3,4 and the speed of the convergence process can be 
determined.  

5. NUMERICAL SIMULATIONS 

In this section, the performance of the control law (7) is 
illustrated. For the first test, the control gains values are 
selected as 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 1. Initial condition of master 
system is (1,1,1,1) whereas the initial condition of slave 
system is (0.7,0,0,0.7). The synchronization process is shown 
in figures 9 – 12. As can be appreciated in these figures, the 
states of the slave system (3) can follow successfully the 
states of the autonomous master system (2). A better 
appreciation of the convergence process is presented in 
figure 13 by means of error evolution  𝑒(𝑡). The control 
inputs are shown in figures 14. It can be observed that these 
signals could be implemented in a functioning system due to 
their smoothness and limited range. 

As it has been shown in (18), the control gains can modify 
the speed of the convergence process. This can be illustrated 
by means of a second simulation test. In this test, the control 
gains are selected as 𝑘1 = 250, 𝑘2 = 150, 𝑘3 = 200 and 𝑘4 =
300.  

 

 

 

 
 

𝑒𝑖(𝑡) = 𝑒𝑖(0) ⋅ exp(−𝑘𝑖 ⋅ 𝑡) for  𝑖 = 1,2,3,4 (18) 

Fig. 9. Convergence process for 𝑥(𝑡) 

Fig. 10. Convergence process for 𝑦(𝑡) 

Fig. 11. Convergence process for 𝑧(𝑡) 

Fig. 12. Convergence process for 𝑤(𝑡) 
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As can be seen from figure 14, the speed of convergence 
process has considerably been improved. In contrast, from 
figure 16, it can be appreciated that the magnitude of control 
signals has also increased. The wide range of values of the 
control law could cause problems for its implementation.  

6. CONCLUSIONS 

Although the chaotic systems are aperiodic oscillators, they 
can be synchronized by means of a proper control strategy. 
In this paper, the use of active control in order to synchronize 
a slave system with a master system was considered. Both 
systems are based on Nazarimehr system.  The workability 
of the controller here was verified by means of numeric 
simulation. If necessary, the values of 𝑘1, 𝑘2, 𝑘3, and 𝑘4 gains 
can be adjusted to increase the speed of convergence. It 
should be considered that increasing the values of the 
control gains increases the magnitude of the control inputs. 
Thus a compromise between these two opposite 
characteristics should be established. In order to consider 
this fact, as a future work, the controller here designed will 
be optimized.     

Fig. 15. Error evolution  𝑒(𝑡) when 𝑘1 = 250, 𝑘2 = 150, 
𝑘3 = 200 and 𝑘4 = 300. 

Fig. 16. Control inputs when 𝑘1 = 250, 𝑘2 = 150, 𝑘3 =
200, and 𝑘4 = 300. 

ACKNOWLEDGEMENT 

This work was financed by SIP, Instituto Politécnico 
Nacional under Grant 20180054. David Zenteno-Lara, David 
Ávila-González, and Christian Nwachioma want to thank 
the economic support provided by CONACYT and BEIFI-
IPN scholarships. Finally, the first author also acknowledges 
the support of EDI-IPN, and SNI-Conacyt. 

 

REFERENCES 

[1] F. Nazarimehr, K. Rajagopal, J. Kengne, S. Jafari, and V. Pham, 

“A new four-dimensional system containing chaotic or hyper-

chaotic attractors with no equilibrium, a line of equilibria and 

unstable equilibria,” Chaos, Solitons & Fractals, vol. 111, pp. 

108–118, Jun. 2018. 

[2] D.M. Curry, “Practical application of Chaos Theory to systems 

engineering,” Procedia Comput. Sci., vol. 8, pp. 39–44, 2012. 

[3] M. Bigerelle, J.M. Nianga, and A. Iost, “Decomposition of a 

Fig. 13. Error evolution  𝑒(𝑡) when 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 1. 

Fig. 14. Control inputs when 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 1. 

IJSER

http://www.ijser.org/


INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 9, ISSUE 6, JUNE-2018 
ISSN 2229-5518 

444     

IJSER © 2018 

http://www.ijser.org 

tribological system by chaos theory on rough surfaces,” Tribol. 

Int., vol. 82, no. PB, pp. 561–576, 2015. 

[4] M. Speakman and R. Sharpley, “A chaos theory perspective on 

destination crisis management: Evidence from Mexico,” J. 

Destin. Mark. Manag., vol. 1, no. 1–2, pp. 67–77, 2012. 

[5] I. Klioutchnikov, M. Sigova, and N. Beizerov, “Chaos Theory 

in Finance,” Procedia Comput. Sci., vol. 119, no. 2017, pp. 368–

375, 2017. 

[6] P.R.L. Alves, L.G.S. Duarte, and L.A.C.P. da Mota, “Detecting 

chaos and predicting in Dow Jones Index,” Chaos, Solitons and 

Fractals, vol. 110, pp. 232–238, 2018. 

[7] A. Göksu, U E. Kocamaz, and Y. Uyaroʇlu, “Synchronization 

and control of chaos in supply chain management,” Comput. 

Ind. Eng., vol. 86, pp. 107–115, 2015. 

[8] T. Akaishi, T. Takahashi, and I. Nakashima, “Chaos theory for 

clinical manifestations in multiple sclerosis,” Med. Hypotheses, 

vol. 115, no. January, pp. 87–93, 2018. 

[9] D. Schuldberg, Chaos Theory and Creativity, 2nd ed., vol. 1. 

Elsevier Inc., 2011. 

[10] B. Sivakumar, “Chaos theory in geophysics: Past, present and 

future,” Chaos, Solitons and Fractals, vol. 19, no. 2, pp. 441–462, 

2004. 

[11] B. Sivakumar, “Chaos theory in hydrology: Important issues 

and interpretations,” J. Hydrol., vol. 227, no. 1–4, pp. 1–20, 2000. 

[12] J.H. Pérez-Cruz, E.A. Portilla-Flores, P.A. Niño-Suárez, and R. 

Rivera-Blas, “Design of a nonlinear controller and its 

intelligent optimization for exponential synchronization of a 

new chaotic system,” Optik (Stuttg)., vol. 130, pp. 201–212, 2017. 

[13] R.B. Levien and S.M. Tan, “Double pendulum: An experiment 

in chaos,” Am. J. Phys., vol. 61, no. 11, pp. 1038–1044, 1993. 

[14] T. Shinbrot et al., “Chaos in a double pendulum To cite this 

version :,” pp. 0–9, 2016. 

[15] T. Stachowiak and T. Okada, “A numerical analysis of chaos in 

the double pendulum To cite this version : HAL Id : hal-

01389907,” vol. 29, no. 2, pp. 417–422, 2016. 

[16] L.M. Pecora and T.L. Carroll, “Synchronization in chaotic 

systems,” Physical review letters, vol. 64, no. 8. pp. 821–824, 1990. 

[17] R. Femat and G. Solís-Perales, “On the chaos synchronization 

phenomena,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 

262, no. 1, pp. 50–60, 1999. 

[18] E.M. Shahverdiev, P.A. Bayramov, and M.V. Qocayeva, 

“Inverse chaos synchronization between bidirectionally 

coupled variable multiple time delay systems,” Optik (Stuttg)., 

vol. 124, no. 18, pp. 3427–3429, 2013. 

[19] J.H. Park, “Chaos synchronization between two different 

chaotic dynamical systems,” Chaos, Solitons and Fractals, vol. 27, 

no. 2, pp. 549–554, 2006. 

[20] J.H. Park, “Chaos synchronization of a chaotic system via 

nonlinear control,” Chaos, Solitons and Fractals, vol. 25, no. 3, pp. 

579–584, 2005. 

[21] J.H. Park, “Chaos synchronization of nonlinear Bloch 

equations,” Chaos, Solitons and Fractals, vol. 27, no. 2, pp. 357–

361, 2006. 

[22] H.T. Yau and J.J. Yan, “Chaos synchronization of different 

chaotic systems subjected to input nonlinearity,” Appl. Math. 

Comput., vol. 197, no. 2, pp. 775–788, 2008. 

[23] H.H. Chen, G.J. Sheu, Y.L. Lin, and C.S. Chen, “Chaos 

synchronization between two different chaotic systems via 

nonlinear feedback control,” Nonlinear Anal. Theory, Methods 

Appl., vol. 70, no. 12, pp. 4393–4401, 2009. 

[24] J. Zhao, Y. Wu, and Q. Liu, “Chaos synchronization between 

the coupled systems on network with unknown parameters,” 

Appl. Math. Comput., vol. 229, pp. 254–259, 2014. 

[25] Y. Wu, X. Zhou, J. Chen, and B. Hui, “Chaos , Solitons and 

Fractals Chaos synchronization of a new 3D chaotic system,” 

Chaos, Solitons and Fractals, vol. 42, no. 3, pp. 1812–1819, 2009. 

[26] K. Vishal and S. K. Agrawal, “On the dynamics, existence of 

chaos, control and synchronization of a novel complex chaotic 

system,” Chinese J. Phys., vol. 55, no. 2, pp. 519–532, 2017. 

[27] M.H. Zaheer, M. Rehan, G. Mustafa, and M. Ashraf, “Delay-

range-dependent chaos synchronization approach under 

varying time-lags and delayed nonlinear coupling,” ISA Trans., 

vol. 53, no. 6, pp. 1716–1730, 2014. 

[28] H.N. Agiza, “Chaos synchronization of Lü dynamical system,” 

Nonlinear Anal. Theory, Methods Appl., vol. 58, no. 1–2, pp. 11–

20, 2004. 

[29] W.H. Deng and C.P. Li, “Chaos synchronization of the 

fractional Lü system,” Phys. A Stat. Mech. its Appl., vol. 353, no. 

1–4, pp. 61–72, 2005. 

[30] M. Ho and Y. Hung, “Synchronization of two different systems 

by using generalized active control,” Phys. Lett. A, vol. 301, no. 

5–6, pp. 424–428, 2002. 

[31] M.T. Yassen, “Chaos synchronization between two different 

chaotic systems using active control,” Chaos, Solitons and 

Fractals, vol. 23, no. 1, pp. 131–140, 2005. 

[32] E.W. Bai and K.E. Lonngren, “Sequential synchronization of 

two Lorenz systems using active control,” Chaos, solitons and 

fractals, vol. 11, no. 7, pp. 1041–1044, 2000. 

[33] H.N. Agiza and M.T. Yassen, “Synchronization of Rossler and 

Chen chaotic dynamical systems using active control,” Phys. 

Lett. A, vol. 278, no. January, pp. 191–197, 2001. 

[34] R. Karthikeyan and V. Sundarapandian, “Hybrid chaos 

synchronization of four-scroll systems via active control,” J. 

Electr. Eng., vol. 65, no. 2, pp. 97–103, 2014. 

[35] A. Uçar, K.E. Lonngren, and E.W. Bai, “Chaos synchronization 

in RCL-shunted Josephson junction via active control,” Chaos, 

Solitons and Fractals, vol. 31, no. 1, pp. 105–111, 2007. 

[36] A.N. Njah and U.E. Vincent, “Chaos synchronization between 

single and double wells Duffing-Van der Pol oscillators using 

active control,” Chaos, Solitons and Fractals, vol. 37, no. 5, pp. 

1356–1361, 2008. 

[37] U.E. Vincent, “Chaos Synchronization Using Active Control 

and Backstepping Control : A Comparative Analysis,” vol. 13, 

no. 2, pp. 253–261, 2008. 

 

IJSER

http://www.ijser.org/

	1. Introduction
	2. Multi – character chaotic system
	3. Synchronization via Active control
	4. Stability proof
	5. Numerical simulations
	6. Conclusions
	ACKNOWLEDGEMENT
	REFERENCES



